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Abstract
The defining relations (triple relations) of n pairs of parafermion operators
f ±

j (j = 1, . . . , n) are known to coincide with a set of defining relations
for the Lie algebra so(2n + 1) in terms of 2n generators. With the common
Hermiticity conditions, this means that the ‘parafermions of order p’ correspond
to a finite-dimensional unitary irreducible representation W(p) of so(2n + 1),
with highest weight

(
p

2 ,
p

2 , . . . ,
p

2

)
. Although the dimension and the character

of W(p) is known by classical formulae, there is no explicit basis of W(p)

available in which the parafermion operators have a natural action. In this
paper we construct an orthogonal basis for W(p), and present the explicit
actions of the parafermion generators on these basis vectors. We use group
theoretical techniques, in which the u(n) subalgebra of so(2n + 1) plays a
crucial role: a set of Gelfand–Zetlin patterns of u(n) will be used to label the
basis vectors of W(p), and also in the explicit action (matrix elements) certain
u(n) Clebsch–Gordan coefficients are essential.

PACS numbers: 03.65.−w, 03.65.Fd, 02.20.−a, 11.10.−z

1. Introduction

It has been known for a long time that Fermi–Dirac and Bose–Einstein statistics do not yield all
possible descriptions of particle systems [7, 11]. The classical work of Green [7] is nowadays
considered as the basic underlying mathematical formulation of the problem of generalized
quantum statistics. In this paper, the notions of Bose oscillators or bosons and Fermi oscillators
or fermions are generalized to parabosons and parafermions. Parabosons and parafermions
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are of interest in many applications, in particular in the quantum field theory [5, 21, 23] and
generalizations of quantum statistics (parastatistics) [7, 11–13, 16].

The ‘creation and annihilation operators’ for parabosons or parafermions satisfy certain
triple relations, which can be considered as their defining relations. The main object to
construct is then the generalization of the boson or fermion Fock space, i.e. the paraboson or
parafermion Fock space. Such a Fock space (with unique vacuum vector) is characterized by a
certain parameter p, known as the order of parastatistics. One way to construct the Fock space
of order p was already discussed by Green, and is referred to as the so-called Green ansatz [7].
The mathematical equivalent is related to finding a proper basis of an irreducible constituent
of a p-fold tensor product [11, 16], in fact a superalgebra tensor product for parabosons
[16, 26]. The computational difficulties arising here turn out to be very hard, and did not lead
to a complete solution of the problem (constructing a proper orthonormal basis of the Fock
space, with explicit actions of the paraboson or parafermion operators on this basis).

In a recent paper [17], this problem of giving a complete construction of the Fock space of
order p was solved for the paraboson case. The solution relies on an important observation by
Ganchev and Palev [6], who showed that the triple relations for n pairs of paraboson operators
are the defining relations for the orthosymplectic Lie superalgebra osp(1|2n) [14]. As a
consequence, the paraboson Fock space of order p is a certain infinite-dimensional unitary
irreducible representation (unirrep) of osp(1|2n). The construction of this representation
was performed in [17], using group theoretical techniques and in particular the branching
osp(1|2n) ⊃ sp(2n) ⊃ u(n). The result is a complete description of a proper basis (an
orthogonal Gelfand–Zetlin-basis) and the explicit action (matrix elements) of the paraboson
operators in this basis [17].

In the present paper we tackle the same problem for the case of parafermions. It is already
known for a long time that the triple relations for n pairs of parafermion operators are the
defining relations for the orthogonal Lie algebra so(2n + 1) [15, 27]. The parafermion Fock
space of order p then corresponds to a unirrep of so(2n + 1), namely to the finite-dimensional
unirrep W(p) with highest weight

(
p

2 ,
p

2 , . . . ,
p

2

)
. Contrary to infinite-dimensional unirreps of

the Lie superalgebra osp(1|2n), where little was known, a lot is known about finite-dimensional
unirreps of Lie algebras and in particular of so(2n + 1). For example, it is easy to write down
the character of W(p) and compute its dimension. On the other hand, a proper basis of
W(p), in which the action of the parafermion operators can be given explicitly, is not known.
The celebrated Gelfand–Zetlin (GZ) basis for finite-dimensional irreducible representations
of the orthogonal Lie groups or Lie algebras, given in [9], is in fact not appropriate here.
In the GZ-basis of [9] for so(2n + 1), the action is given for a set of 2n generators, which
are however different from the parafermion operators (and also different from the Chevalley
generators; in fact, the generators in [9] are not root vectors). The relations between the
parafermion operators and the generators used in [9] or the Chevalley generators are highly
nonlinear [25], and hence do not lead to a practical and explicit expression of the parafermion
matrix elements.

Previous attempts to solve this problem followed essentially Green’s ansatz. In terms
of the Lie algebra so(2n + 1), this amounts to constructing W(p) as one of the irreducible
components in the p-fold tensor product W(1)⊗p of W(1), where W(1) is the so(2n+1) unirrep
with highest weight

(
1
2 , 1

2 , . . . , 1
2

)
, i.e. W(1) is the usual fermion Fock space of dimension 2n

(the spinor representation of so(2n + 1)). In a number of papers, further attention was given to
the actual decomposition of W(1)⊗p into its irreducible components [3, 10, 24]. In [3, 24], the
‘vacuum subspaces’ of the irreducible components of W(1)⊗p were considered, and shown to
correspond to unirreps of the subalgebra u(n). These approaches did not lead to solution for
the parafermion matrix elements, however.
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In the current paper we present an explicit solution to this problem. Our solution is based
upon group theoretical techniques: we use, in particular, the branching so(2n + 1) ⊃ u(n), an
induced representation construction, the known Gelfand–Zetlin basis description for u(n)

[8], u(n) Clebsch–Gordan coefficients, the method of reduced matrix elements and the
computational techniques developed in [17]. Our main result is a specific orthogonal basis
for W(p) described by means of GZ-patterns, and the explicit action (matrix elements) of the
parafermion operators in this basis.

The structure of the paper is as follows. In section 2 we give the defining relations for
the parafermion operators, and for the parafermion Fock space W(p). In section 3 we relate
the parafermion operators to a set of generators for the Lie algebra so(2n + 1), and we give a
character formula and a dimension formula for W(p). Section 4 is the core of the paper: using
an induced module construction, we find a proper basis for W(p) and compute the explicit
action of the parafermion creation and annihilation operators on the basis vectors. An example
is given in section 5, and we conclude the paper with a summary and some final remarks in
section 6.

2. The parafermion Fock space W (p)

For a system consisting of n fermions, with creation and annihilation operators F±
i

(i = 1, 2, . . . , n), the defining relations are written by means of anticommutators,{
F−

i , F +
j

} = δij , {F−
i , F−

j } = {
F +

i , F +
j

} = 0. (2.1)

The n-fermion Fock space is defined as a Hilbert space with vacuum vector |0〉, with

〈0|0〉 = 1, F−
i |0〉 = 0,

(
F±

i

)† = F∓
i (i = 1, . . . , n). (2.2)

This Hilbert space is finite-dimensional and irreducible under the action of the algebra spanned
by the elements 1, F +

i , F−
i (i = 1, . . . , n), subject to (2.1). A set of orthogonal basis vectors

of this space is given by

|θ1, . . . , θn〉 = (
F +

1

)θ1 · · · (F +
n

)θn |0〉, θ1, . . . , θn ∈ {0, 1}. (2.3)

This Fock space, denoted by W(1), has dimension 2n. We shall see that it is a certain unirrep
of the Lie algebra so(2n + 1), with highest weight

(
1
2 , . . . , 1

2

)
(the spinor representation).

The purpose of this paper is to study Fock representations of a system of n parafermions.
For such a system, with creation and annihilation operators f ±

i (i = 1, . . . , n), the defining
relations are usually given by[

f −
j ,

[
f +

k , f −
l

]] = 2δjkf
−
l ,[

f −
j ,

[
f +

k , f +
l

]] = 2δjkf
+
l − 2δjlf

+
k ,[

f −
j ,

[
f −

k , f −
l

]] = 0

and their conjugates. They can be written in the following unified form:[[
f

ξ

j , f
η

k

]
, f ε

l

] = 1
2 (ε − η)2δklf

ξ

j − 1
2 (ε − ξ)2δjlf

η

k , (2.4)

where j, k, l ∈ {1, 2, . . . , n} and η, ε, ξ ∈ {+,−} (to be interpreted as +1 and −1 in the
algebraic expressions ε − ξ and ε − η).

The parafermion Fock space W(p) is the Hilbert space with unique vacuum vector |0〉,
defined by means of (j, k = 1, 2, . . . , n)

〈0|0〉 = 1, f −
j |0〉 = 0,

(
f ±

j

)† = f ∓
j ,

[
f −

j , f +
k

]|0〉 = pδjk|0〉, (2.5)

and by irreducibility under the action of the algebra spanned by the elements f +
j , f −

j

(j = 1, . . . , n), subject to (2.4). The parameter p is known as the order of the parafermion

3
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system. For p = 1 the parafermion Fock space W(p) coincides with the fermion Fock space
W(1). In order to understand the structure of W(p) for general (integer) p-values, it will
be necessary to make the connection between the algebraic relations (2.4) and the defining
relations of the Lie algebra so(2n + 1).

3. The Lie algebra so(2n + 1) and its unirrep W (p)

The orthogonal Lie algebra so(2n + 1) consists of matrices of the form⎛
⎝ a b c

d −at e
−et −ct 0

⎞
⎠ , (3.1)

where a is any (n × n)-matrix, b and d are antisymmetric (n × n)-matrices, and c and e are
(n × 1)-matrices (t stands for transpose). Denote by eij the matrix with zeros everywhere
except a 1 on position (i, j) (where i, j ∈ {1, . . . , 2n + 1}). Then the Cartan subalgebra h of
so(2n + 1) is spanned by the diagonal elements

hj = ejj − en+j,n+j (j = 1, . . . , n). (3.2)

In terms of the dual basis εj of h∗ the root vectors and corresponding roots of so(2n + 1) are
given by:

ejk − ek+n,j+n ↔ εj − εk, j 	= k = 1, . . . , n,

ej,k+n − ek,j+n ↔ εj + εk, j < k = 1, . . . , n,

ej+n,k − ek+n,j ↔ −εj − εk, j < k = 1, . . . , n,

ej,2n+1 − e2n+1,j+n ↔ εj , j = 1, . . . , n,

en+j,2n+1 − e2n+1,j ↔ −εj , j = 1, . . . , n.

The positive roots are given by �+ = {εj (j = 1, . . . , n); εj − εk, εj + εk(1 � j < k � n)}.
Then it is easy to verify that the following multiples of some of the root vectors

f +
k =

√
2(ek,2n+1 − e2n+1,n+k), f −

k =
√

2(e2n+1,k − en+k,2n+1) (k = 1, . . . , n) (3.4)

satisfy the defining triple relations of n parafermions (2.4). Furthermore, note that all other
root vectors of so(2n + 1) can be obtained by considering all possible commutators

[
f

ξ

j , f
η

k

]
.

This was one of the main results of [15, 27]:

Theorem 1. As a Lie algebra defined by generators and relations, so(2n + 1) is generated by
the 2n elements f ±

k subject to the parafermion relations (2.4).

The parafermion operators f +
j are part of the positive root vectors, and the f −

j are part
of the negative root vectors. The generating vector |0〉 of the parafermion Fock space W(p)

satisfies (j, k = 1, . . . , n)

f −
j |0〉 = 0,

[
f −

j , f +
k

]|0〉 = pδjk|0〉. (3.5)

Furthermore, it is easy to verify that[
f −

j , f +
j

] = −2hj (j = 1, . . . , n), (3.6)

from which one deduces hj |0〉 = −p

2 |0〉. Hence we have the following:

Corollary 2. The parafermion Fock space W(p) is the unitary irreducible representation of
so(2n + 1) with lowest weight

(−p

2 ,−p

2 , . . . ,−p

2

)
.
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A lot is known about finite-dimensional representations of the Lie algebra so(2n + 1) (or
of any simple Lie algebra). In particular, dimension and character formulae are available for
such representations. In these formulae, one uses the Weyl group W and the Weyl tool ρ. For
the case of so(2n + 1),W = Sn ×{−1, +1}n, of order n! · 2n (Sn is the symmetric group). And
from (3.3) one can verify that the Weyl tool is

ρ = 1

2

∑
α∈�+

α =
n∑

j=1

2n + 1 − 2j

2
εj =

(
2n − 1

2
, . . . ,

5

2
,

3

2
,

1

2

)
.

Weyl’s character formula for an irreducible representation V (	) with highest weight 	 reads
[29]

char V (	) =
∑
w∈W

ε(w) ew(	+ρ)

/ ∑
w∈W

ε(w) ew(ρ), (3.7)

where ε(w) = ±1 is the signature of w, and e stands for the formal exponential. Usually, one
denotes eεj by xj ; then the character is a (symmetric) polynomial in the variables x1, x2, . . . , xn.

In the current case, W(p) is an so(2n + 1) representation with lowest weight(−p

2 ,−p

2 , . . . ,−p

2

)
. If p is a positive integer, this is the lowest weight of the finite-

dimensional irreducible representation with highest weight 	 = (
p

2 ,
p

2 , . . . ,
p

2

)
. Note that,

with (ε1 − ε2, . . . , εn−1 − εn, εn) as a simple root system, the Dynkin labels of this highest
weight are [0, 0, . . . , 0, p]. Let us compute the character of this representation: splitting the
Weyl group into its symmetric group and {−1, +1}n, the numerator in (3.7) becomes

∑
w∈W

ε(w) ew(	+ρ) =
∑
w∈Sn

ε(w)w

⎛
⎝ n∏

j=1

(
x

p/2+(2n+1−2j)/2
j − x

−p/2−(2n+1−2j)/2
j

)⎞⎠ ,

in terms of a determinant, this can be written as∑
w∈W

ε(w) ew(	+ρ) = det
1�i,j�n

(
x

p/2+(2n+1−2j)/2
i − x

−p/2−(2n+1−2j)/2
i

)
= (x1 · · · xn)

−p/2−(2n−1)/2 det
(
x

p+2n−j

i − x
j−1
i

)
.

Hence, one obtains

char W(p) = (x1 · · · xn)
−p/2 det

(
x

p+2n−j

i − x
j−1
i

)
det

(
x

2n−j

i − x
j−1
i

) . (3.8)

The quotient of determinants appearing here has a nice expression in terms of Schur functions
sλ(x), see [20, p 84, equation (2′)]. It reads:

char W(p) = (x1 · · · xn)
−p/2

∑
�(λ′)�p

sλ(x1, . . . , xn). (3.9)

Herein, the Schur functions sλ(x) are, as usual [20], labeled by a partition λ = (λ1, λ2, . . .),
where all λi are nonnegative integers and λ1 � λ2 � · · ·. The number of nonzero parts λi is
the length of λ, denoted by �(λ). As sλ(x) = sλ(x1, . . . , xn) with only n variables xi , only
those λ with �(λ) � n appear (since for �(λ) > n one has sλ(x1, . . . , xn) = 0). In (3.9), λ′

stands for the conjugate partition of λ (a partition whose Young diagram [20] is the transpose
of the Young diagram of λ). Otherwise said, the sum in (3.9) is over all partitions λ whose
Young diagram fits inside the (n × p) rectangle. In what follows, expansion (3.9) will be
very relevant. For a more general context in which identities such as (3.9) appear, see [22]
(the expression (3.9) appears there as [22, theorem 2.3(1)]). The origin of (3.9) goes back to

5
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work of Bracken and Green [2], who do not give (3.9) explicitly, but obtain it implicitly by
describing the branching so(2n + 1) ⊃ u(n) for W(p).

Apart from the character formula, there is also Weyl’s dimension formula [29] for an
irreducible representation V (	) with highest weight 	:

dim V (	) =
∏

α∈�+
〈	 + ρ|α〉∏

α∈�+
〈ρ|α〉 . (3.10)

Using (3.3) and 〈εi |εj 〉 = δij , this yields

dim W(p) =
∏

1�j�k�n

p + 1 + 2n − j − k

1 + 2n − j − k
=

�(n−1)/2
∏
i=0

(
p+2n−2i−1

2n−4i−1

)
(

2n−2i−1
2n−4i−1

) . (3.11)

In the last expression with binomial coefficients, the upper limit for i is the largest integer not
exceeding (n − 1)/2.

The character and dimension of W(p) give already a lot of information, but not yet what
we really want, namely an explicit orthogonal basis of W(p) and the action of f ±

i on these
basis vectors. In order to obtain this, we shall follow the induced module construction used in
[17].

4. The construction of W (p)

From (3.3) it is already clear that the 2n elements f ±
j are a set of generators for so(2n + 1).

In fact, all basis elements of so(2n + 1) (all root vectors plus a basis of the Cartan subalgebra)
are given by

f ±
j (1 � j � n),

[
f ±

j , f ±
k

]
(1 � j < k � n),

[
f +

j , f −
k

]
(1 � j, k � n).

(4.1)

Some relevant subalgebras of so(2n + 1) are easy to describe by means of these parafermion
generators f ±

j :

Proposition 3. A basis for the subalgebra so(2n) of so(2n + 1) is given by the elements[
f ±

j , f ±
k

]
(1 � j < k � n),

[
f +

j , f −
k

]
(1 � j, k � n). (4.2)

The n2 elements[
f +

j , f −
k

]
(1 � j, k � n) (4.3)

are a basis for the so(2n) subalgebra u(n).

In fact, with
[
f +

j , f −
k

] = 2Ejk , the triple relations (2.4) imply the relations [Eij , Ekl] =
δjkEil − δliEkj . In other words, the elements

[
f +

j , f −
k

]
form, up to a factor 2, the standard

u(n) or gl(n) basis elements.
So the parafermion generators f ±

j highlight the subalgebra chain so(2n + 1) ⊃ so(2n) ⊃
u(n). We use here the notation u(n), algebraically the same as the general linear Lie algebra
gl(n), but with the conditions

(
f ±

j

)† = f ∓
j implying that we are dealing with the ‘compact

form’ u(n).
The subalgebra u(n) can be extended to a parabolic subalgebra [30] P of so(2n + 1):

P = span
{[

f +
j , f −

k

]
(1 � j, k � n), f −

j (1 � j � n), [f −
j , f −

k ](1 � j < k � n)
}
. (4.4)

Recall that
[
f −

j , f +
k

]|0〉 = pδjk|0〉 with
[
f −

j , f +
j

] = −2hj . This means that the space
spanned by |0〉 is a trivial one-dimensional u(n) module C|0〉 of weight

(−p

2 , . . . ,−p

2

)
. Since

6
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f −
j |0〉 = 0, the module C|0〉 can be extended to a one-dimensional P module. Now we can

define the Verma module or the induced so(2n + 1) module W(p):

W(p) = Indso(2n+1)
P C|0〉. (4.5)

This is an so(2n + 1) representation with lowest weight
(−p

2 , . . . ,−p

2

)
. By the Poincaré–

Birkhoff–Witt theorem [4], it is easy to give a basis for W(p):(
f +

1

)k1 · · · (f +
n

)kn
([

f +
1 , f +

2

])k12
([

f +
1 , f +

3

])k13 · · · ([f +
n−1, f

+
n

])kn−1,n |0〉,
(4.6)

k1, . . . , kn, k12, k13 . . . , kn−1,n ∈ Z+.

Note that W(p) is infinite-dimensional. It is in general not an irreducible representation of
so(2n+1). Let M(p) be the maximal nontrivial submodule of W(p). Then the simple module
(irreducible representation), corresponding to the parafermion Fock space, is

W(p) = W(p)/M(p). (4.7)

For W(p), it is easy to compute its character. Using the fact that the weight of |0〉 is(−p

2 , . . . ,−p

2

)
, the basis (4.6) and the Cauchy identity [18]

1∏n
i=1(1 − xi)

∏
1�j<k�n(1 − xjxk)

=
∑

λ

sλ(x1, . . . , xn) =
∑

λ

sλ(x), (4.8)

where the sum is over all partitions λ and sλ(x) is the Schur symmetric function, one finds

char W(p) = (x1 · · · xn)
−p/2∏n

i=1(1 − xi)
∏

1�j<k�n(1 − xjxk)
= (x1 · · · xn)

−p/2
∑

λ

sλ(x). (4.9)

These Schur functions sλ(x) are the characters of finite-dimensional u(n) representations.
Hence this expansion yields the branching to u(n) of the so(2n + 1) representation W(p).
This gives an elegant possibility to label the basis vectors of W(p). For each irreducible
representation of u(n) one can use the corresponding Gelfand–Zetlin basis [1, 8]. The union
of all these GZ bases is then the basis for W(p). Thus the new basis of W(p) consists of
vectors of the form (the label p is dropped from the notation of the vectors)

|m) ≡ |m)n ≡

∣∣∣∣∣∣∣∣∣

m1n · · · · · · mn−1,n mnn

m1,n−1 · · · · · · mn−1,n−1

...
. . .

m11

⎞
⎟⎟⎟⎠ =

∣∣∣∣[m]n

|m)n−1

)
. (4.10)

The top line of this pattern, also denoted by the n-tuple [m]n, is any partition λ (consisting of
non-increasing nonnegative numbers). The remaining n−1 lines of the pattern will sometimes
be denoted by |m)n−1. All mij in the above GZ-pattern are nonnegative integers, satisfying
the betweenness conditions

mi,j+1 � mij � mi+1,j+1 (1 � i � j � n − 1). (4.11)

Since the weight of |0〉 is
(−p

2 , . . . ,−p

2

)
, the weight of the above vector is determined by

hk|m) =
⎛
⎝−p

2
+

k∑
j=1

mjk −
k−1∑
j=1

mj,k−1

⎞
⎠ |m). (4.12)

Now we use the same technique as in [17]. The triple relations (2.4) yield[[
f +

i , f −
j

]
, f +

k

] = 2δjkf
+
i .

7
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With the identification
[
f +

i , f −
j

] = 2Eij in the standard u(n) basis, this is equivalent to the
action Eij · ek = δjkei . Hence the set

(
f +

1 , f +
2 , . . . , f +

n

)
is a standard u(n) tensor of rank

(1, 0, . . . , 0). So one can attach a unique GZ-pattern with top line 10 · · · 0 to every f +
j ,

corresponding to the weight +εj . Explicitly,

f +
j ∼

10 · · · 000
10 · · · 00
· · ·
0 · · · 0
· · ·
0,

(4.13)

where the pattern consists of j − 1 zero rows at the bottom, and the first n − j + 1 rows are of
the form 10 · · · 0. The tensor product rule in u(n) reads

([m]n) ⊗ (10 · · · 0) = (
[m]n+1

) ⊕ (
[m]n+2

) ⊕ · · · ⊕ (
[m]n+n

)
, (4.14)

where ([m]n) = (m1n,m2n, . . . , mnn) and a subscript ±k indicates an increase of the kth label
by ±1: (

[m]n±k

) = (m1n, . . . , mkn ± 1, . . . , mnn). (4.15)

On the right-hand side of (4.14), only those components which are still partitions (i.e.,
consisting of nondecreasing integers) survive.

Now a general matrix element of f +
j can be written as follows [17]:

(m′|f +
j |m) =

(
[m]n+k

|m′)n−1

∣∣∣∣ f +
j

∣∣∣∣[m]n

|m)n−1

)

=
(

[m]n

|m)n−1;
10 · · · 00
10 · · · 0
· · ·
0

∣∣∣∣[m]n+k

|m′)n−1

)
× (

[m]n+k‖f +‖[m]n
)
. (4.16)

The first factor on the right-hand side is a u(n) Clebsch–Gordan coefficient [17, 28]; the
second factor is a reduced matrix element. By the tensor product rule, the first line of |m′) has
to be of the form (4.15), i.e. [m′]n = [m]n+k for some k-value.

The special u(n) Clebsch–Gordan coefficients (CGCs) appearing here are well known.
They can be found, e.g. in [28]. They are expressed by means of u(n)-u(n − 1) isoscalar
factors and u(n − 1) CGCs, which on their turn are written by means of u(n − 1)-u(n − 2)

isoscalar factors and u(n−2) CGCs, etc. The explicit form of the special u(n) CGCs appearing
here is given in appendix A of [17].

Just as in [17], the main problem is now to find expressions for the reduced matrix
elements, i.e. for the functions Gk([m]n), where

Gk([m]n) = Gk(m1n,m2n, . . . , mnn) = (
[m]n+k‖f +‖[m]n

)
, (4.17)

for arbitrary n-tuples of non-increasing nonnegative integers [m]n = (m1n,m2n, . . . , mnn). In
that case, one can write the explicit actions:

f +
j |m) =

∑
k,m′

(
[m]n

|m)n−1;
10 · · · 00
10 · · · 0
· · ·
0

∣∣∣∣[m]n+k

|m′)n−1

)
Gk([m]n)

∣∣∣∣[m]n+k

|m′)n−1

)
, (4.18)

8
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f −
j |m) =

∑
k,m′

(
[m]n−k

|m′)n−1;
10 · · · 00
10 · · · 0
· · ·
0

∣∣∣∣[m]n

|m)n−1

)
Gk([m]n−k)

∣∣∣∣[m]n−k

|m′)n−1

)
. (4.19)

The key calculation to determine the unknown functions Gk is to start from the following
action:

[
f −

n , f +
n

]|m) = −2hn|m) =
⎛
⎝p − 2

⎛
⎝ n∑

j=1

mjn −
n−1∑
j=1

mj,n−1

⎞
⎠

⎞
⎠ |m). (4.20)

Now one can express the left-hand side by means of (4.18) and (4.19), using the explicit
form of the CGCs and isoscalar factors (which are rather simple in the case j = n). The
result is a complicated system of coupled recurrence relations for the functions Gk . It is
quite surprising that this system of coupled nonlinear recursion equations has a rather simple
solution. Using the relevant boundary conditions, we have been able to solve this system of
recurrence relations. This task would have been hardly impossible without the use of Maple.
Our main computational result is:

Proposition 4. The reduced matrix elements Gk appearing in the actions of f ±
j on vectors

|m) of W(p) are given by

Gk(m1n,m2n, . . . , mnn)

=
⎛
⎝− (En(mkn + n − k) + 1)

∏n
j 	=k=1(mkn − mjn − k + j)∏�n/2


j 	= k
2 =1

(mkn − m2j,n − k + 2j)(mkn − m2j,n − k + 2j + 1)

⎞
⎠

1/2

(4.21)

for k even and by

Gk(m1n,m2n, . . . , mnn)

=
⎛
⎝(p − mkn + k − 1)(On(mkn + n − k) + 1)

∏n
j 	=k=1(mkn − mjn − k + j)∏�n/2�

j 	= k+1
2 =1

(mkn − m2j−1,n − k + 2j − 1)(mkn − m2j−1,n − k + 2j)

⎞
⎠

1/2

(4.22)

for k odd.

Herein E and O are the even and odd functions defined by

Ej = 1 if j is even and 0 otherwise,
(4.23)

Oj = 1 if j is odd and 0 otherwise,

where obviously Oj = 1 − Ej , but it is still convenient to use both notations. Also, note
that products such as

∏n
j 	=k=1 mean ‘the product over all j -values running from 1 to n, but

excluding j = k’. The notation �a
 (resp. �a�) refers to the floor (resp. ceiling) of a, i.e. the
largest integer not exceeding a (resp. the smallest integer greater than or equal to a).

To present all the details of this computational result is unrealistic. Just as in [17], the proof
consists of verifying that all triple relations (2.4) hold when acting on any vector |m). Each
such verification leads to an algebraic identity in the n variables of the partition, m1n, . . . , mnn.
In such computations, there are some intermediate verifications: e.g. the action

[
f +

j , f −
k

]|m)

should leave the top row of the GZ-pattern |m) invariant (since
[
f +

j , f −
k

]
belongs to u(n)). In

fact, it must give (up to a factor 2) the known action of the standard u(n) matrix elements Ejk

in the classical GZ-basis.

9
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The explicit expressions for the reduced matrix elements give the action of the generators
in the basis of W(p), for arbitrary p. The structure of the maximal submodule M(p) and hence
of the irreducible factor module W(p) is revealed by examining when these matrix elements
vanish. It follows from (4.21) and (4.22) that the only crucial factor is

(p − mkn + k − 1), (k odd).

In particular for k = 1 this factor is (p−m1n), and m1n is the largest integer in the GZ-pattern.
Starting from the vacuum vector, with a GZ-pattern consisting of all zeros, one can raise the
entries in the GZ-pattern by applying the operators f +

j . However, when m1n has reached the
value p it can no longer be increased. As a consequence, all vectors |m) with m1n > p belong
to the submodule M(p). This uncovers the structure of W(p):

Corollary 5. For p a positive integer, the parafermion Fock space W(p) has as a basis the
vectors |m) with m1n � p. In other words, the top line of |m) is a partition λ with largest part
not exceeding p, i.e. �(λ′) � p. As a consequence, it follows from (4.9) that

char W(p) = (x1 · · · xn)
−p/2

∑
λ,�(λ′)�p

sλ(x1, . . . , xn).

This last result coincides with (3.9). Note that p must be a positive integer in order to have a
positive inner product (m|m) for all possible patterns.

Of course, we did not make these hard computations just to find the character of W(p),
which was already determined by standard techniques. Our main purpose was to find a proper
orthonormal basis for W(p), in which the action of the parafermion operators f ±

j can be
computed explicitly. This has now been obtained by means of (4.18), (4.19) and (4.21),
(4.22). Let us summarize this result, inserting also the explicit CGCs of [17, appendix A].

Theorem 6. An orthonormal basis for the parafermion Fock space W(p) is given by the
vectors |m), see (4.10), with m1n � p. Its dimension is given by (3.11). The action of the
Cartan algebra elements of so(2n + 1) is

hk|m) =
⎛
⎝−p

2
+

k∑
j=1

mjk −
k−1∑
j=1

mj,k−1

⎞
⎠ |m), (1 � k � n). (4.24)

The action of the parafermion operators f ±
j is given below, first for j = n (simple case) and

then for general j . We have

f +
n |m) =

n∑
i=1

(∏n−1
k=1(lk,n−1 − lin − 1)∏n

k 	=i=1(lkn − lin)

)1/2

Gi(m1n,m2n, . . . , mnn)|m)+in (4.25)

f −
n |m) =

n∑
i=1

( ∏n−1
k=1(lk,n−1 − lin)∏n

k 	=i=1(lkn − lin + 1)

)1/2

Gi(m1n, . . . , min − 1, . . . , mnn)|m)−in. (4.26)

Herein, lij = mij − i,Gi is determined by (4.21), (4.22), and ±i, n attached as a subscript to
|m) indicates a replacement mi,n → mi,n ± 1. In general,

f +
j |m) =

n∑
in=1

n−1∑
in−1=1

. . .

j∑
ij =1

S(in, in−1)S(in−1, in−2) . . . S(ij+1, ij )

(∏j−1
k=1(lk,j−1 − lij ,j − 1)∏j

k 	=ij =1(lkj − lij ,j )

)1/2

×
n−j∏
r=1

(∏n−r
k 	=in−r=1(lk,n−r − lin−r+1,n−r+1 − 1)

∏n−r+1
k 	=in−r+1=1(lk,n−r+1 − lin−r ,n−r )∏n−r+1

k 	=in−r+1=1(lk,n−r+1 − lin−r+1,n−r+1)
∏n−r

k 	=in−r=1(lk,n−r − lin−r ,n−r − 1)

)1/2

× Gin(m1n,m2n, . . . , mnn)|m)+in,n;+in−1,n−1;...;+ij ,j ; (4.27)

10
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f −
j |m) =

n∑
in=1

n−1∑
in−1=1

. . .

j∑
ij =1

S(in, in−1)S(in−1, in−2) . . . S(ij+1, ij )

( ∏j−1
k=1(lk,j−1 − lij ,j )∏j

k 	=ij =1(lkj − lij ,j + 1)

)1/2

×
n−j∏
r=1

(∏n−r
k 	=in−r=1(lk,n−r − lin−r+1,n−r+1)

∏n−r+1
k 	=in−r+1=1(lk,n−r+1 − lin−r ,n−r + 1)∏n−r+1

k 	=in−r+1=1(lk,n−r+1 − lin−r+1,n−r+1 + 1)
∏n−r

k 	=in−r=1(lk,n−r − lin−r ,n−r )

)1/2

× Gin(m1n, . . . , min,n − 1, . . . , mnn)|m)−in,n;−in−1,n−1;...;−ij ,j . (4.28)

Once again, each symbol ±ik, k attached as a subscript to |m) indicates a replacement
mik,k → mik,k ± 1, and

S(k, l) =
{

1 for k � l

−1 for k > l.
(4.29)

5. Example: W (p) for so(5)

The above formulae for general n look rather involved, so perhaps it is useful to give an
example. Let us consider the case n = 2, i.e. the Lie algebra so(5). For any positive integer
p, the parafermion Fock space W(p) has dimension given by (3.11),

dim W(p) = (p + 3)(p + 2)(p + 1)

6
. (5.1)

The set of orthonormal basis vectors of W(p) is given by all vectors with integer m-patterns
of the form ∣∣∣∣m12,m22

m11

)
, p � m12 � m11 � m22 � 0. (5.2)

Clearly, the number of different m-patterns satisfying these inequalities coincides with (5.1).
The action of the parafermion generators f +

1 and f +
2 is given by

f +
1

∣∣∣∣m12,m22

m11

)
=

√
(m11 − m22 + 1)(p − m12)

∣∣∣∣m12 + 1,m22

m11 + 1

)

−
√

(m12 − m11)(m22 + 1)

∣∣∣∣m12,m22 + 1
m11 + 1

)
, (5.3)

f +
2

∣∣∣∣m12,m22

m11

)
=

√
(m12 − m11 + 1)(p − m12)

∣∣∣∣m12 + 1,m22

m11

)

+
√

(m11 − m22)(m22 + 1)

∣∣∣∣m12,m22 + 1
m11

)
. (5.4)

The action of f −
1 and f −

2 follows from the above expressions using (m′|f −
j |m) = (m|f +

j |m′).
In this case, it is not too difficult to check these actions by hand: one can do this by comparing
the action of the left-hand side of the triple relation (2.4) with the action of the right-hand side
of (2.4) (for some values of j, k, l and ξ, η, ε).

6. Summary and conclusion

In this paper we have given a complete description of the unitary irreducible representations
W(p) of so(2n + 1) with highest weight

(
p

2 ,
p

2 , . . . ,
p

2

)
, which in particular are of interest in

the theory of parafermion statistics because these representations are exactly the Fock spaces

11
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of n parafermions, with p being the order of the parastatistics. Although many aspects of
W(p) are known from general Lie algebra representation theory, the problem of giving an
appropriate orthogonal basis for W(p) and the explicit action of the parafermion operators
on such a basis was not solved. In the present paper, we solve this problem using some
group theoretical methods and computational techniques. A crucial role in our analysis is
played by the u(n) subalgebra of so(2n + 1), generated by all commutators of the parafermion
creation and annihilation operators. Taking a certain parabolic subalgebra P containing u(n)

and a trivial module of P generated from the vacuum, i.e. the lowest weight vector of weight(−p

2 ,−p

2 , . . . ,−p

2

)
, an induced module W(p) of so(2n+ 1) is constructed. The Fock module

W(p) is the quotient of this induced module by its maximal submodule M(p). The character
of the induced module is readily obtained and by a classical result of Cauchy–Littlewood the
characters can be rewritten as an infinite sum over partitions of Schur symmetric functions. This
can be reinterpreted as a decomposition of the so(2n + 1) module into an infinite sum of finite-
dimensional simple u(n) modules labeled by partitions. For each irreducible representation
of u(n) one can use the corresponding Gelfand–Zetlin basis. The union of all these GZ-basis
vectors is the basis for the induced module W(p). The main calculation is then the action of
the parafermion operators on this basis. Just as for the case of paraboson operators [17], the
collection of the n parafermion creation operators is a u(n) tensor operator of rank (1, 0, . . . , 0).
To calculate its matrix elements, they are written as a product of certain u(n) Clebsch–Gordan
coefficient and a reduced matrix element. As the relevant u(n) CGCs are known, the problem
is to find the reduced matrix elements. Solving a set of recurrence relations for these leads to
their expressions. These explicit expressions give not only the action of the generators in the
basis of W(p), they also yield the structure of the maximal submodule M(p) and hence of the
irreducible factor module W(p). This leads to the main result of the paper: an explicit basis
of W(p) (consisting of all possible GZ-patterns with integer entries at most p) and the explicit
action of the generators in this basis. As an illustration, the case n = 2 is given in more detail.

We have considered here the parafermion Fock spaces of order p for a finite degree
of freedom (n finite). The real interest lies in such quantum systems (parabosons and
parafermions) with an infinite degree of freedom (n = +∞), see e.g. [11, 16]. In a forthcoming
paper, we hope to report on how the results of [17] and of the current paper can be used to
construct representations of order p for an infinite set of parabosons and parafermions. Also
an investigation of representations of the ‘parastatistics algebra’ in which both parabosons and
parafermions appear [19] should be of interest.
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